HIFAR Refurbishment of Systems for Safe Enclosure

John Wernej
HIFAR Site Supervisor

May 2012
HIFAR Decommissioning

• Phase A – Closure
 • Part 1 – Shutdown, remove fuel, water, rigs
 • Part 2 – Preliminary dismantling
 • Part 3 – Refurbishing

• Phase B – Care & Maintenance

• Phase C – Decommissioning
 • Part 1 – Preparation for dismantling
 • Part 2 – Dismantling

• Phase D – Return to Green/Brown Field
Phase A – Part 1

• Shutdown & removal of fuel, rigs, targets, absorbers and water
 • As per HIFAR QMS and operational Licence
 • Followed by cessation of shift staff coverage of HIFAR
 • Care and maintenance licence application

• Minimisation of hazards
 • Sources
 • Fire loading (wax, timber, clothing, boxes)
 • Other hazards (gas bottles, chemicals)
 • No plant modifications
Phase A – Part 2

- Preliminary dismantling of selected redundant plant
 - Reduce footprint (quantity of plant and equipment to maintain)
 - Minimise hazards (electrical, confined space, fire loading, contaminants)
Phase A – Part 3

• Installation and commissioning of refurbished plant
• Reduce maintenance and operational costs
• Increase safety and efficiency
Refurbishment Milestones

- Jan 07 Shutdown
- May 07 Initial Possess or Control Licence application
- Jun 07 24hr shift staffing ceased
- Sep 08 Possess and Control Licence granted
- Apr 09 3D laser scan of HIFAR
- Jun 10 New EPS completed
- Jul 10 Containment Isolation System removals
- Jul 10 Space Conditioning System removed
- Mar 11 HIFAR cranes disabled (except main crane)
Refurbishment Milestones

- 2011 Security System refurbished
- 2011 New HP Instrumentation system completed
- 2011 New Fire Protection System installed
- 2011 Communication system rationalised
- 2011 New Stacks Monitoring System completed
- Jul 11 HVAC Upgrade completed
- Jul 11 New SCADA completed
- Jul 11 New HVAC/SCADA Control Room built
- Jan 12 EPSS wiring, diesel generators, switchboards removed
- Apr 12 Lighting System Refurbishment
- May 12 HIFAR Records Repositories
Electrical Power Supply System – HIFAR Operation

• EPSS for HIFAR operations – large and complex.
• Mains supply to 2 separated switch boards. Standby boards each backed up by a diesel generator. UPS supplies to instrumentation and rigs.
Electrical Power System – Post Shutdown

- Refurbished Electrical Power Supply - simpler design and decreased capacity.
- Installed and commissioned in parallel with EPSS.
- New main switchboard has been installed.
- Power supply to the new HVAC and ventilation system, power for the instrumentation, lighting and power supply. Stand-by power available for the extract ventilation system and PLC for the SCADA.
- Significant reduction in maintenance requirements
- Procurement and installation costs was $260,000
Electrical Power System – Post Shutdown

New Electrical Power Supply Distribution Board

New Ventilation Distribution Board
Electrical Power Supply Observations

- Planning and scheduling issues.
- Site location of plant – think about future use of areas
- Running two power supply systems in parallel, safety issues
- Selection of contractors
- Stakeholder relations – impact on other buildings
Ventilation System

• During HIFAR Operation:
 • Active and Normal Extract systems and Normal Supply System
 • Gamma monitoring on each filter bank which could shut down HIFAR during operation. CIS radiation sensor on the filter banks which would seal the ventilation system.

• Post HIFAR shut down
 • Ventilation System refurbished,
 • water seals removed,
 • automatic fan change over
 • variable speed fan motors
Ventilation System – Observations

- Standby AVS to be kept
- Should you really dismantle the plant?
- Re-use plant as much possible
- Staff continuity on projects is important
 - However different people will have different ideas
- Evaluate conditions early so as to prevent rework
HVAC System

• During HIFAR Operation:
 • Supply air was conditioned. Old and obsolete controls and equipment. Heating elements used – expensive to operate

• Post HIFAR Shutdown
 • New air handling unit and chiller installed. Heating and cooling via reverse cycle air conditioning.

• Observations
 • Reuse existing plant and equipment (ducts) where possible and appropriate
 • Benefits of designing plant in-house to ensure correct results
 • Choose the contractor carefully
 • Proven and reliable
SCADA

• During HIFAR Operation:
 • Data Acquisition System was used to monitor the reactor operating systems, plant and experiments. The system did not provide any control functions of the HIFAR plant items.

• Post HIFAR shut down:
 • For the unmanned HIFAR there is a requirement for a SCADA system to monitor residual radiation levels,
 • building temperature pressure and humidity.
 • SCADA system forms part of HIFAR BMS

• Observations
 • Companies use different software standards
 • Corel Draw vs. AutoCAD
Radiation Monitoring

• HIFAR Operation:
 • Eberline Gamma Monitors
 • Obsolete & no spare parts available
 • Triton Tritium Monitors
 • Obsolete & no spare parts available

• Post HIFAR shut down:
 • New Minalarm Gamma Monitors
 • New Overhoff Tritium Monitors
 • New units connected to SCADA system to enable monitoring from outside of the reactor building

• Observations
 • Will spare parts be available for the expected lifetime of new plant and equipment
 • Sometimes good equipment may need to be replaced due to lack of spares