
IAEA Headquarters.
Vienna, Austria.

Licensing a Centralized Spent Fuel Storage Facility

ENRESA
(National Enterprise for Radioactive Waste)

Mr. Miguel A. Martinez HLW Engineering Department

May 20th 2014
Licensing a Spent Fuel Storage Facility

NPPs LOCATION AND SF SITUATION

- 10 Nuclear Reactors
- 7 reactors in operation at 5 sites
 - 7.400 MW
 - 21% of country’s electricity generation (2012)
- 2 NPP shut down under decommissioning
- 1 NPP stopped
1. Reracking 90’s

2. ISFSI 2000-2016

3. ATC 2017-2077

4. DGP 2068-

- PROVIDING ENOUGH CAPACITY TO ASSIST THE OPERATION OF NPPS WHILE LOOKING FOR A FOR LONG TERM INTERIM STORAGE SOLUTION.

- PLANNING FOR LONG-TERM DISPOSAL SOLUTIONS
Licensing a Spent Fuel Storage Facility

General aspects of SNF management

- **Different options presented and assessed according Spanish Nuclear Program Size**
 - Deep Geological Disposal preferred
 - *Needs extended public acceptance and technical development*
 - *Interim storage in the meantime*
 - It allows R&D to provide solutions to future decisions: confirming geological disposal or even coming back to recycling if advanced cycles are industrially deployed.
 - Centralized solution preferred with ad-hoc facilities when needed

- **Conclusions:**
 - The priority is the Centralized Interim Storage Facility (ATC)
 - Complemented by In situ Increased Storage capacity when required
 - Deep Geological Disposal studies continuation to support decision making about management options. Considered as an assumption for financing the Waste Fund.
 - R&D Plan 2009-2013. Following one is being prepared.
 - Costs supported by the NPPs as a fee on nuclear electricity gross production
Licensing a Spent Fuel Storage Facility

(CENTRALIZED STORAGE FACILITY FOR SF) ATC. MAIN ADVANTAGES OF ATC OPTION

ATC

(CENTRALIZED STORAGE FACILITY FOR SF AND HLW)

- Enables SF and HLW common management
 Interim management becomes independent of (disposal)
- Provides extra capacity to deal with potential unexpected events
- Reduces the amounts of management facilities thus decreasing the risks and obligations
- Allows the declassification of nuclear grounds after NPPs decommissioning
- Allows to comply with existing obligations of bringing back waste from foreign reprocessing
- Significantly saves costs
Licensing a Spent Fuel Storage Facility

SELECTED TECHNOLOGY: VAULTS AND CONCRETE BUILDING

Vaults for spent fuel and high level waste (vitrified) and a Concrete building for medium long-lived waste

Selected criteria:

- **Safety:**
 - Multiple barrier confinement
 - Passive safety features
 - Cooling by natural flow
 - Low doses

- **Economy:**
 - Compact and modular
 - Low operating costs

- **Strategy:**
 - Independence between management stages
 - Long life design
 - Reversibility
 - Flexibility

- Internationally proven technology
Licensing a Spent Fuel Storage Facility

THE FULL EXTENT OF ATC FACILITIES

- **ATC AND ANCILLARIES**
 - Main facility: Storage vaults, reception and process areas
 - ILW-GTCC Storage building, casks storage, maintenance workshop

- **ASSOCIATED RESEARCH CENTER**
 - SF and Radwaste lab (Integrated in the Nuclear Installation)
 - Conventional labs

- **BUSINESS PARK**
 - Enterprises center
 - Industrial area
Licensing a Spent Fuel Storage Facility

SELECTED TECHNOLOGY: VAULTS AND CONCRETE BUILDING

Contains:

- **Vaults** for spent fuel and high level waste (vitrified) and a **concrete building** for medium long-lived waste

Selected technology criteria:

- **Design:**
 - Multiple barrier confinement
 - Cooling by natural draft
 - Low dose

- **Economy:**
 - Compact and modular
 - Low operating costs

- **Strategy:**
 - Independence among management stages
 - Long life design
 - Reversibility
 - Flexibility

- **International benchmark of technology**
Licensing a Spent Fuel Storage Facility

CONCEPTUAL DESIGN

http://www.enresa.es/publicaciones_y_audiovisuales/videos_e_interactivos/interactivo_atc
Licensing a Spent Fuel Storage Facility

PROPOSED LAYOUT
Licensing a Spent Fuel Storage Facility

SECTION

CELDA DE DESCARGA CONTENEDOR DE MANEJO ZONA DE PREPARACIÓN DE CONTENEDORES

LEVEL +17.000
LEVEL +23.500
LEVEL +22.700
LEVEL +25.800
LEVEL +45.500
LEVEL +8.500
LEVEL +0.000
LEVEL -6.500
Licensing a Spent Fuel Storage Facility

LIFE MANAGEMENT PLAN

Fuel

HEAT INSULATING THICKNESS: 50mm

SHIELDING PLUG Ø ext. 1030 x 10 mm
Ø ext. 960 x 10 mm

(WELL) Ø ext. 1030 x 4 mm (Air double jacket)

CANISTERS (See detail)

4 GUIDES

INTERMEDIATE FLOOR (3 clearance)

SHOCK ABSORBER Ø ext. 810 x 4 mm

LOWER GUIDE PLATE FOR HORIZONTALITY ADJUSTMENT

ANCHORS (Out of scope)

SITE WELD AFTER x, y POSITIONNING

Metallic components

3 Axes

Concrete
Main Facility Postulated Accidents:

- **Transport Cask Accidents**
 - Vehicle Collision
 - Cask Tip over

- **Handling:**
 - Spent Fuel Element Drop.
 - HLW/MLW cask fall (applicable also for the CMF).
 - Loss of Process Building HVAC.

- **Storage:**
 - SF Canister & HLW Canister Drop.
 - Partial obstruction of convective air flow on vaults/ Chimney loss.
 - Loss of Process Building HVAC.

- **Other:**
 - Shielding Function Failure.
 - Confinement Barrier Failure.
 - SSC Structural Failures
 - Internal Fire

- **External:**
 - Long term loss of external power supply.
 - Earthquake
 - Internal Flooding
 - Tornados & Lightning.
Licensing a Spent Fuel Storage Facility

ATC RECEPTION BUILDING
Licensing a Spent Fuel Storage Facility

ATC PROCESS BUILDING
Licensing a Spent Fuel Storage Facility

ATC STORAGE BUILDING (VAULTS) PHASE 1
Licensing a Spent Fuel Storage Facility

VAULTS AND TUBES DETAILS

PWR 17 x 17
Cavity section 227.5 x 227.5
7 places (only 6 Fuels)

PWR 17x17

Ø975
24

GAP=3

Ø911

Ø905

Ø927

THK=8

WELL OD1015
ID 995 (NOTE 1)

JACKET OD1065
ID 1077 (NOTE 1)
Licensing a Spent Fuel Storage Facility

STORAGE VAULTS HEAT REMOVAL PRINCIPLE
Licensing a Spent Fuel Storage Facility

CASK INTERIM STORAGE FACILITY

- **CASK BUFFERING:**
 - Immediate needs from NPPs.
 - ISFI’s liberations
 - Operational need for the ATC cell.

- Preliminary capacity for 70 casks.

- Design according to nuclear standards.
Licensing a Spent Fuel Storage Facility

CASK INTERIM FACILITY NEW STORAGE LICENSING CONDITIONS.

- Dual Purpose Casks are presently licensed for Storage in NPP ISFSI´s, some in buildings and some in pads.
- Dual Purpose Casks shall have to be re-licensed for storage in the ICSF storage conditions at Villar de Cañas (Earthquake, external flooding, etc., etc.).
- Thermal, shielding, criticality analysis must be performed with the most unfavourable combination of casks.
- Cask interim Facility should be operable before the main facility, to accommodate particular needs of the different ISFSI´s.

Cask Interim Facility Layout
Licensing a Spent Fuel Storage Facility

CASK MAINTENANCE FACILITY

LIGHT MAINTENANCE POSITIONS

DECONTAMINATION CELL

INTERNAL MAINTENACE POSITION
Licensing a Spent Fuel Storage Facility

CASK MAINTENANCE FACILITY (CMF)

- Maintenance Types:
 - "Light": Only external maintenance
 - 20 ÷ 80 operations / year
 - "Heavy": Internal decontamination in hot cell, internal & external maintenance
 - 15 operations / year
 - Up to 3 casks simultaneously.
Licensing a Spent Fuel Storage Facility

CASK MAINTENANCE FACILITY (CMF) DECONTAMINATION & INTERNAL MAINTENANCE
Licensing a Spent Fuel Storage Facility

CASK MAINTENANCE FACILITY (CMF) INTERNAL MAINTENANCE
Licensing a Spent Fuel Storage Facility

CASK MAINTENANCE FACILITY (CMF) EXTERNAL MAINTENANCE & SHIPMENT
Licensing a Spent Fuel Storage Facility

PROJECT STATUS

• Generic Design of a vault-type facility in 2003
• Approved with conditions by the CSN (Spanish Safety Authority) in 2006
• Complementary preliminary projects developed between 2006 and 2010:
 • Loaded Cask Facility
 • Spent Fuel and Radioactive Waste Laboratory
 • Cask Maintenance Facility
• Preliminary Characterization of the three areas offered by the Municipality
• 1st Phase of the detailed study of the site finally purchased
• Awarding Process & Selection of the Engineering Companies
• Preliminary Safety Assessment Report (PSAR) + Environmental Impact Assessment (EIA):
 ➢ Previous and Construction Permits
• Detailed Design
• Industrial classification of the site
• Ongoing information to local stakeholders

IAEA Headquarters.
Vienna, Austria.

Licensing a Centralized Spent Fuel Storage Facility

ENRESA
(National Enterprise for Radioactive Waste)

Mr. Miguel A. Martinez HLW Engineering Department

May 20th 2014