Regulatory framework on DPC licensing in the Czech Republic

Peter Lietava
Content

• Czech regulatory framework on DPC licensing
• Interfaces between DPC, AFR storage facilities and NPP licensing and transport licence
• Re-licensing of DPC and AFR storage facilities
• Regulatory guide on DPC and AFR storage facilities licensing
Regulatory Framework – I.

• Storage of SF in AFR storage facilities is regulated in 4 main steps:
 – Licensing of NPP
 – Licensing of AFR storage facility
 – Type (design) approval of DPC (licence)

• NPPs and AFR storage facilities are under Czech law considered to be nuclear installations → same legal framework (Atomic Act + decrees on siting, construction, commissioning, operation and decommissioning of nuclear installations)

• Legal framework for type approval of DPCs has the same basis (Atomic Act), but then it differs (Decree on Type Approval and Transport)
Regulatory Framework – II.

• Licensing processes is based on the regulatory review of safety cases

• Design of AFR storage facilities (siting/design phase) has to:
 – take into account the SFSF expected lifetime;
 – incorporate passive safety features;
 – be designed in such a way that all SF can be retrieved within an appropriate time;
 – be designed so that individual casks (or unpacked SF elements – wet SFSF only) can be inspected and retrieved

• Content of the siting/design safety case (excluding formal documents as proof of site ownership, financial liability in case of nuclear accident, …):
Regulatory Framework – III.

- EIA report or results of EIA process;
- QA program for siting/design process;
- (initial) safety assessment;
- assessment of needs for safeguards and security

• Construction safety case:
 - main safety objective of construction phase - construct the SFSF so that all its safety functions are guaranteed;
 - content of construction safety case:
 • MS for SF store construction;
 • (preliminary) safety assessment;
 • proposed safeguards and security system
Regulatory Framework – IV.

• Commissioning safety case:
 – main safety objective of commissioning phase -
 demonstration that the SF storage facility and its future
 operation meets the design objectives and the performance
 criteria
 – commissioning is usually completed in several stages:
 • construction completion;
 • equipment testing;
 • performance demonstration;
 • inactive commissioning;
 • active commissioning
Regulatory Framework – V.

- Commissioning programme agreed as appropriate with the regulatory body, shall in general include:
 - the organization and responsibilities for commissioning;
 - the commissioning stages;
 - the suitable testing of SSCs based on their importance to safety, the test schedule;
 - the commissioning procedures and reports;
 - the methods of reviewing and verification;
 - the treatment of deficiencies and deviations the documentation requirements.
Regulatory Framework – VI.

• Operational safety case:
 – main safety objective of operation phase - achieve and maintain high standards of safety in terms of protecting operating staff, the environment and members of the public;
 – specific requirements for SF store operation:
 • preparation of the final set of OLCs and their periodical review and update;
 • maintenance, periodic testing and inspection;
 • modification control;
 • radiation protection;
 • ...
Regulatory Framework – VII.

• Cask type approval documentation - for dry cask SFSF can be considered as additional safety case;

• Content of cask safety case (B(U)F and S type):
 – Introduction
 • Purpose
 • Regulatory framework
 • Assessment endpoints and philosophy
 • Brief description and utilisation of cask
 • Inventory cask is designed for
 – Detailed cask description
 • Design criteria
 • Description of cask design
Regulatory Framework – VIII.

- Containment system
- Radiation shielding
- Confinement system
- Lifting devices
- Shock absorber
- Corrosion protection
- Contamination protection
 - Technical drawings
 - Cask components and material specification
 - Special features
 - Management system
 - Technological and manufacturing documentation
Regulatory Framework – IX.

- Safety assessments
 - Criticality evaluation
 - Radiation protection
 - Thermal evaluation
 - Cask containment system evaluation
 - Stress analysis of cask and its components
- Documentation of cask tests
- Operating procedures and maintenance programme
- Proposal for proof about the compliance of cask properties and parameters with design
Interfaces – I.

- Safety case for NPP considers the links to AFR SFSF in both conceptual and technical way
- Conceptual way – storage of SF in reactor pools (safety assessment a part of NPP’s safety case) and transport to AFR SFSF
- Technical details – used SSC and tools for SF handling between reactor pool and DPC in reactor building (transfer, decontamination, drying, He leakage tests, …)
- Operating procedures for SF and DPC handling in reactor building – part of cask safety case
- OLCs – only water level and \(\text{H}_3\text{BO}_3 \) concentration in reactor pool and handling shaft
Interfaces – II.

- Much closer link is between safety cases of dry cask SFSF and DPC
- Interfaces are identified in OLCs for AFR SFSF and licence conditions for AFR SFSF and DPC (type approval)
- OLCs (example for SFSF Dukovany):
 - maximum number of casks in the storage hall (133 casks);
 - geometry of the cask positioning – axis distance (3,35 m);
 - maximal cask surface temperature (< 85°C / < 110°C);
 - leaktightness of casks – the He pressure (≥ 0.35 MPa),
 - max. allowable dose rate on the surface and in a 2 m distance + average surface contamination;
 - DPC loading – according to the type approval + total 85Kr activity measured during cask drying (< 20 GBq/cask);
Interfaces – III.

• Other operating conditions for AFR SFSF identified in the operating licence:
 – SF stored in SFSF and used DPCs (type approved);
 – operation of AFR SFSF in line with:
 • approved OLCs;
 • other licenses issued by the regulatory body (on RAW management, radiation protection, management of fissile materials, emergency preparedness);
 • security arrangements;
 • requirements on reserve storage capacity in reactor pool;
 • requirements on SF handling after reactor pools decommissioning;
 – decommissioning according to the approved decom. plan
Interfaces – IV.

- assessment of operation (annual report on operational experience feedback + submission of licence renewal prior to the expiration of valid licence)

- DPC loading conditions defined in cask type approval:
 - radioactive content (SF type, max. initial enrichment, total activity and heat output, min. cooling time in reactor pools, ...);
 - loading patterns;
 - cooling media;
 - drying limits;
 - equilibrium temperature;
 - leaktightness test;
 - decontamination/dosimetric control;
 - surface temperature; ...
Interfaces – V.

- No difference between on- and off-site transports
- Interfaces to transport licence are limited to the requirement:
 - on the use of licensed DPC (+ compliance of every single DPC with approved design);
 - use of operational procedures for cask handling reviewed by the regulatory body; and
 - achievement of equilibrium temperature conditions prior to the transport out of the reactor building
- Other requirements same as for any other transport of radioactive substances and fissile materials (dosimetric control of DPC and transport means, marking, security and emergency arrangements, …)
Re-licensing of DPC and AFR Storage Facilities – I.

- Licences for DPC and SFSF are issued for limited time (10 y) and periodically renewed before their expiration (licences condition);
- From legal point of view there are no differences between first licensing and re-licensing of DPC and SFSF
- For re-licensing purposes the only additional document is a detailed OEF report containing details on incidents, accidents and operator’s response to them and results of operator’s and regulator’s inspections;
Re-licensing of DPC and AFR Storage Facilities – II.

• Independently of the periodic safety reassessments, the safety case shall be updated particular if:
 – there are modifications and new regulatory requirements and relevant standards;
 – there has been significant unexpected deviations in the environment conditions in the storage facility;
 – a significant change in the cask and SF elements acceptance criteria is proposed;
 – the properties of casks or SF elements stored have changed unexpectedly beyond the storage limits
Regulatory guide on DPC and AFR SFSF licensing – I.

- To address all regulatory issues and interfaces when licensing an AFR SFSF, the SUJB has issued a comprehensive guide on Storage of Spent Fuel in Purpose Build Nuclear Installations (BN 02-2, March 2010 - http://www.sujb.cz/fileadmin/sujb/docs/dokumenty/publikace/Skladovani_VJP_v_samostatnych_JZ_BN_02_2.pdf)
Regulatory guide on DPC and AFR SFSF licensing – II.