Building codes and corrective actions

Martin Jiránek
CZECH TECHNICAL UNIVERSITY, Praha

Jiří Hůlka,
SURO, Praha
corrective actions are active or passive

Indoor – lower pressure than outdoor!
1. Purpose of corrective actions
2. Factors influencing the design
3. Principles of corrective actions
 • Sealing of radon entry routes
 • Ensuring air-tightness of the substructure
 • Sub-slab depressurization
 • Air gap depressurization
 • Measures for houses on crawl spaces/cellars
 • Ventilation measures
4. Rules for selecting corrective actions
5. Thermal retrofitting and indoor radon
6. RADIUM-RICH BUILDING MATERIALS
1. PURPOSE OF CORRECTIVE ACTIONS

…… to ensure that radon in every room of the habitable space decreases below the reference level or design value + ALARA

Reference level is prescribed by legislation within the range 100 – 300 Bq/m³.

Design value is prescribed by the owner
(determined for example on the basis of ALARA principle).

REMARK:
For new buildings – it is much easier and cheaper to reach low Rn
Strategy: introduce building codes for new building and enforce Rn prevention!

For existing buildings – more complicated to do it !!!
2. FACTORS INFLUENCING THE DESIGN

- Results of diagnostic measurements
- Existing condition of the building
- Climatic conditions
- Workmanship, experience of the contractor
- Technical standards, building codes
- Effectiveness of the measure

CORRECTIVE ACTIONS
3.1 Sealing of radon entry routes

Sealing is usually applied for:
- cracks in contact structures
- services penetrations
- gaps between walls and floors

This method is often used in combination with other methods.

Effectiveness is usually lower than 40 %!! + durability (?)
Sealing of cracks

Passive cracks (without any movement) – polymer cement mortars and compounds, epoxy resins, etc.

Active cracks (dilatation movements can occur in the crack) – permanently elastic sealants (acrylic, silicone, bitumen) and PU foams.
Sealing of pipe penetrations

Penetrations without dilatation movements

- Gap
- Groove
- Concrete slab
- Subsoil
- Permanently elastic jointing compound
Sealing of covers of inspection chambers

- Steel angle
- Sealing strip
- Silicone/rubber sealing strip
- Cover with tiles
- Sewage pipe with inspection fitting

Untight bottom
Sealing of doors to the cellar

Rotten and disintegrated door frames and sills and twisted doors must be replaced with new ones.

Doorsills can reduce air leakage beneath the door.
3.2 Ensuring air-tightness of the substructure

It is **usually not possible** to place radon barrier material continuously over the entire surfaces of walls and floors in contact with the soil.

Effectiveness is usually lower than 45%!

Use only if the reconstruction of floors is necessary due to their bad technical condition.

It is recommended to use this measure in combination with sub-slab or air gap depressurization!
Additionally applied radon-proof insulation

In existing houses not so effective (less than 45%), because it usually cannot be applied under the walls and thus radon can be still transported through wall-floor joints. Therefore combination with a soil ventilation system is recommended.

Additionally applied RPI must be connected in an airtight manner to the existing waterproofing below the walls.
Summary of measurements of radon diffusion coefficient for different radon barriers. Measured by the Faculty of Civil Engineering of CTU and National Radiation Protection Institute.
3.3 Creating underpressure in the subsoil

Can be ensured by:
- radon sumps
- drilled tubes
- perforated pipes
- radon well

The preference should be given to systems that can be installed without the reconstruction of floors.

Effectiveness is around 95%.
Radon sump

- Roof fan
- Exhaust pipe in the soil
- Radon sump

Pipe entry sealed against the air leakage

Roof fan
Exhaust pipe
Radon sump
Perforated drilled tubes

Tubes drilled from the external trench
Perforated drilled tubes

Vertical exhaust pipe

Interconnecting PVC pipe running in the cellar under the ceiling

Roof fan

Perforated tubes drilled from the cellar

Tubes drilled from the cellar
Perforated drilled tubes

Tubes drilled from the internal pit
Example - realization
Network of flexible perforated pipes

- Vertical exhaust pipe
- Roof fan
- Existing floors were removed
- Perforated pipes inserted into the drainage layer
Example - realization
Intended mainly for use in sick layers of highly permeable soils (gravel, coarse sand).

Arrangement of a Swedish radon well:
1 - 0,4 – 1,0 m diameter pipe with holes at the bottom end
2 – fan
3 – sealing plastic foil
4 – suction chamber
5 – cover
6 – vent pipe
Radon well

Examples from Finland

Fan: 250 W, 60 l/s

Fan: 260 W, 105 l/s

By: Hannu Arvela, STUK, Finland
Fans suitable for SSD systems

Typical paddle-wheel fan installations

Fans in plumbing and inspection chambers
Fans suitable for SSD systems

Typical roof fan installations
Fans suitable for SSD systems

Typical roof fan installations

Exhaust pipe running in the soil outside the house must be airtight
Fans suitable for SSD systems

• Fan sizing depends on the airtightness of floors, vertical profile of soil permeability and the geometry and length of ventilation pipes

• Fans must be able to transport soil air with a relative humidity from 80 % to 100 % and to resist the flow of condensed water

• Fans should not be installed in the habitable zone

• SSD should not induce underpressure indoors in order not to influence the operation of combustion appliances
3. PRINCIPLES OF CORRECTIVE ACTIONS

3.4 Creating overpressure in the subsoil

Known also as **air cushion** method.

The principle is that indoor air is forced in the sub-floor region, in order to dilute radon concentration under the building.

Used rarely, when sub-slab depressurization is not effective.

Effectiveness can be as high as 85 - 95%.

From UK and USA experience this works best in highly permeable soils.
3. PRINCIPLES OF CORRECTIVE ACTIONS

3.5 Creating underpressure in the air gaps formed over the contact structures

The gap can be formed also along walls made of uranium rich materials. In this case the method serves for removing radon exhaled from the wall.

Effectiveness is around 90 %.

Suitable also for radon from building materials!
AIR GAPS DEPRESSURIZATION

• Condensation of water vapour in the gap should be prevented.

• Active ventilation creating a slight underpressure within the gap is preferred. Active ventilation is executed without any vent holes delivering external air into the gap.

• Soil air must not be used to ventilate the air gap. When ventilating with internal air, the back flow of air from the gap to the interior must be prevented (e.g. using back-flow valves located in the vent holes).
AIR GAPS DEPRESSURIZATION

Location of fans

In case of greater pressure losses, the axial fan should be replaced by paddle-wheel fan installed on the external surface of the wall.
Example of wrong application of the floor air gap

Existing single family house

Indoor radon concentration before mitigation: 600 Bq/m³
Example - original corrective action

1999 - 2000:
new floors + passive air gap ventilation

Indoor radon concentration after corrective action
1 150 – 2 250 Bq/m³

Reasons for failure:

- Natural ventilation through vent holes of insufficient dimension located in perimeter walls only (without vertical exhaust) – underpressure was not generated in the gap
- Leaky connection of the dimpled membrane to existing walls
- Leaky joints between dimpled membranes
- Underpressure generated in the house sucked radon from the gap to indoor space
3.6 Increasing ventilation rate of the habitable space

Can be ensured by:
- improving natural ventilation
- installation of hybrid or mechanical ventilation

Effectiveness is usually lower than
- < 40% (natural ventilation)
- < 70% (mechanical ventilation)

Suitable not only for radon from the soil, but also for radon from building materials!
3.6 Increasing air exchange rate by installing mechanical \textit{exhaust} air ventilation
3.6 Mechanical supply air ventilation
(positive ventilation, house pressurization)

Supply fan + filter + heater

Indoor air escapes through leakages around window frames and between window frames and casements

Not suitable for attached houses

Increased risk of water vapour condensation within the building envelope construction.
3.6 Mechanical supply and exhaust air ventilation for the whole house

Ventilation unit with filters, heat exchanger, heater and fans.

Due to energy costs the ventilation rate should not exceed 1,0 h⁻¹, otherwise supplementary measures (sealing of the substructure) should be adopted.

All rooms with radon concentration above 300 Bq/m³ should be ventilated.
3.7 Increasing ventilation rate of crawl spaces or non-habitable spaces

Can be ensured by:
- improving natural ventilation
- installation of mechanical ventilation

Effectiveness is usually around 50% (natural ventilation) or 75% (mechanical ventilation).
How it works - example: Radon concentration after the active corrective action was applied

During active ventilation radon concentration decreased to the mean value 152 Bq/m³.

NEW: Rn detector for switching fan
SUMMARY: Effectiveness of corrective actions

Effectiveness expresses by how many percent radon concentration decreases after installation of a particular measure or combination of measures

<table>
<thead>
<tr>
<th>Corrective action</th>
<th>Effectiveness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Typical range</td>
</tr>
<tr>
<td>New floors with radon-proof insulation</td>
<td>35 - 45</td>
</tr>
<tr>
<td>New floors with radon-proof insulation + passive sub-slab or floor air gap ventilation</td>
<td>45 - 55</td>
</tr>
<tr>
<td>New floors with radon-proof insulation + active sub-slab or floor air gap depressurization</td>
<td>80 - 90</td>
</tr>
<tr>
<td>Active sub-slab depressurization installed without the floor reconstruction</td>
<td>80 - 95</td>
</tr>
<tr>
<td>Sealing of radon entry points (cracks, pipe penetrations, etc.)</td>
<td>10 - 40</td>
</tr>
<tr>
<td>Increased natural ventilation of the habitable space</td>
<td>20 - 40</td>
</tr>
<tr>
<td>Improving ventilation rate by mechanical ventilation</td>
<td>50 - 70</td>
</tr>
</tbody>
</table>

Table based on experience from the Czech Republic
4. RULES FOR SELECTING ACTIONS

Corrective actions applied in case of „just above“ the reference level (C = 300 - 600 Bq/m³)

- sealing of radon entry routes (cracks, pipe penetrations, etc.)
- improving the cellar/crawl space – outdoor ventilation
- preventing the air movement from the cellar/crawl space into the first floor
- improving the indoor – outdoor (natural) ventilation
- creating a slight overpressure within the building (not applicable in countries with cold climates)
4. RULES FOR SELECTING ACTIONS

Corrective actions applied in case of „well above“ the reference level (C > 600 Bq/m³)

- The most effective solution is a sub-slab depressurization installed without the reconstruction of floors
- Replacement of existing floors by new ones in which the radon-proof insulation is combined with the soil or air gaps ventilation is selected, when the reconstruction of floors is necessary
- Installation of mechanical ventilation is suitable in houses with low ventilation rate (below 0,3 h⁻¹), or where radon problem is caused by radon from building materials
Some advice:

• Prefer **simple** actions, inexpensive to install and maintain, it must be easily applicable!
• Apply pragmatic approach and **common sense**, any initiative of the householder to reduce radon **should be supported**
• Corrective measures can be **installed in stages**
• An appropriate solution can be based on **combination of different principles** (sealing, ventilation, soil depressurization etc.)
• Measure should have **sufficient efficiency according to the measured radon concentration** (ALARA)
• It **should not worsen the technical state** and the quality of the building
• It should **not disturb the occupants** by higher noise levels and other adverse effects
• **Operating costs** must be at a **reasonable level** (it should not induce large thermal losses)
• It is **advantageous**, if other problems and defects of the building **are solved together with radon**
Technical standards, workmanship …

1) Prepare technical standards, building codes for protection of buildings against radon

Radon corrective actions are part of the building structure. They must be evaluated completely, particularly with regard to building physics, thermal protection of buildings, building waterproofing, ventilation etc.

2) Workmanship, skills, experience of the contractor

Prepare national expert(s)—building professional (architect, engineer) for RADON corrective action
5. THERMAL RETROFITTING AND RADON

Energy-saving measures increase the air-tightness of the above-ground building shell. Consequence - > the house ventilation becomes less intense and pressure difference can change. Ventilation rates can decrease up to 4 times!!

Negative effects:

• impaired quality of the indoor environment
• increased indoor radon concentration

Not only energy needs, but also indoor air quality should be considered when planning energy conversion of buildings

It is almost always possible to find an optimal solution

= energy needs are kept to a reasonably low level and the indoor radon concentration is kept to an acceptable level (i.e. below the reference level)
bad example (CZ) : consequences of thermal retrofitting

ROOF – 100 mm polystyrene
New air-tight plastic windows
ETICS – 100 mm polystyrene

2008 – energy-saving measures undertaken
bad example – consequences of thermal retrofitting

Indoor radon concentration before and after adoption of energy – saving measures (track detectors exposed for 1 year)

<table>
<thead>
<tr>
<th>Room</th>
<th>Radon concentration [Bq/m³]</th>
<th>Ratio [-]</th>
<th>Parameter Before</th>
<th>Parameter After</th>
<th>Ratio Bef/Af</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before C_{before}</td>
<td>after C_{after}</td>
<td>Intensity of ventilation n</td>
<td>0,36 h⁻¹</td>
<td>0,106 h⁻¹</td>
</tr>
<tr>
<td>Living room + kitchen – 1ˢᵗ floor</td>
<td>302</td>
<td>753</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children’s bedroom - 2ⁿᵈ floor</td>
<td>296</td>
<td>1165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main bedroom - 2ⁿᵈ floor</td>
<td>312</td>
<td>1524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen - 2ⁿᵈ floor</td>
<td>438</td>
<td>1025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean values</td>
<td>337</td>
<td>1117</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Possible reasons

• a decrease in the ventilation rate (higher air-tightness)
• an increase in the radon exhalation rate (ETICS) – not confirmed
6. RADIUM-RICH BUILDING MATERIALS

Corrective actions against gamma radiation from building materials

- **Removing building materials** (non-bearing walls, floor fillings, plasters etc.)

- **Application of a shielding** on the surface of radium-rich building materials (it must be verified that the structure is able to carry the additional load from the shielding)

- **Limiting human presence** in the proximity of radium-rich building materials
Effectiveness of shielding materials

Attenuation – ratio between the gamma dose rate with shielding material to the rate without it

<table>
<thead>
<tr>
<th>Shielding material</th>
<th>Thickness of shielding material (mm) for indicated attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9</td>
</tr>
<tr>
<td>Lead</td>
<td>11</td>
</tr>
<tr>
<td>Iron</td>
<td>6.1</td>
</tr>
<tr>
<td>Barite concrete</td>
<td>12</td>
</tr>
<tr>
<td>3 300 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Barite concrete</td>
<td>18</td>
</tr>
<tr>
<td>2 800 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Ordinary concrete</td>
<td>30</td>
</tr>
<tr>
<td>2 300 kg/m³</td>
<td></td>
</tr>
<tr>
<td>Solid brick</td>
<td>46</td>
</tr>
<tr>
<td>1 800 kg/m³</td>
<td></td>
</tr>
</tbody>
</table>

Table from Safety Guide
Testing of shielding effectiveness

Dry walling – without using a mortar

Brick lining (sand-lime brick, bulk density 1800 kg/m\(^3\))

thickness 65 mm) – reduction of the gamma dose rate to 66 % of the initial value.

Brick lining

thickness 140 mm) – reduction of the gamma dose rate to 54 % of the initial value.
Example of removing radium-rich materials

Repeated measurement of the gamma dose rate in air
Measures against RADON
(from building materials)

Suitable measures
• Removing building materials
• Increasing the ventilation rate
• Creating ventilated air gaps around building constructions

Unsuitable measures
• Impermeable surface coatings (low effectiveness, very sensitive to puncturing and surface condensation)
Thank you
...and thanks to:

Martin Jiránek
CZECH TECHNICAL UNIVERSITY
Faculty of Civil Engineering, Praha
E-mail: jiranek@fsv.cvut.cz

Chris Scivyer, BRE, UK
Bernard Collignan, CSTB, France
Olli Holmgren, STUK, Finland